Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Acta Pharm ; 74(1): 117-130, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554383

RESUMEN

Statin treatment may increase the risk of diabetes; there is insufficient data on how statins affect glucose regulation and glycemic control and the effects of statins on liver enzymes related to carbohydrate metabolism have not been fully studied. Therefore, we aimed to compare the effects of the statin derivatives, pravastatin, and rosuvastatin, on carbohydrate metabolism in an experimental diabetic rat model. Female Wistar albino rats were used and diabetes was induced by intraperitoneal injection of streptozotocin. Thereafter, 10 and 20 mg kg-1 day-1 doses of both pravastatin and rosuvastatin were administered by oral gavage to the diabetic rats for 8 weeks. At the end of the experiment, body masses, the levels of fasting blood glucose, serum insulin, insulin resistance (HOMA-IR), liver glycogen, and liver enzymes related to carbohydrate metabolism were measured. Both doses of pravastatin significantly in creased the body mass in diabetic rats, however, rosuvastatin, especially at the dose of 20 mg kg-1 day-1 reduced the body mass signi ficantly. Pravastatin, especially at a dose of 20 mg kg-1 day-1, caused significant increases in liver glycogen synthase and glucose 6-phosphate dehydrogenase levels but significant decreases in the levels of glycogen phosphorylase, lactate dehydrogenase, and glucose-6-phosphatase. Hence, pravastatin partially ameliorated the adverse changes in liver enzymes caused by diabetes and, especially at the dose of 20 mg kg-1 day-1, reduced the fasting blood glucose level and increased the liver glycogen content. However, rosuvastatin, especially at the dose of 20 mg kg-1 day-1, significantly reduced the liver glycogen synthase and pyruvate kinase levels, but increased the glycogen phosphorylase level in diabetic rats. Rosuvastatin, 20 mg kg-1 day-1 dose, caused significant decreases in the body mass and the liver glycogen content of diabetic rats. It can be concluded that pravastatin, especially at the dose of 20 mg kg-1 day-1 is more effective in ameliorating the negative effects of diabetes by modulating carbohydrate metabolism.


Asunto(s)
Diabetes Mellitus Experimental , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Femenino , Ratas , Animales , Glucemia , Ratas Wistar , Rosuvastatina Cálcica/efectos adversos , Pravastatina/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipoglucemiantes/farmacología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa/farmacología , Glucógeno Hepático/efectos adversos , Glucógeno Hepático/metabolismo , Hemoglobina Glucada , Glucosa/metabolismo , Metabolismo de los Hidratos de Carbono , Glucógeno Fosforilasa/metabolismo , Glucógeno Fosforilasa/farmacología , Hígado/metabolismo , Insulina/farmacología
2.
Amino Acids ; 56(1): 14, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340233

RESUMEN

Glycogen phosphorylase (GP) is biologically active as a dimer of identical subunits, each activated by phosphorylation of the serine-14 residue. GP exists in three interconvertible forms, namely GPa (di-phosphorylated form), GPab (mono-phosphorylated form), and GPb (non-phosphorylated form); however, information on GPab remains scarce. Given the prevailing view that the two GP subunits collaboratively determine their catalytic characteristics, it is essential to conduct GPab characterization to gain a comprehensive understanding of glycogenolysis regulation. Thus, in the present study, we prepared rabbit muscle GPab from GPb, using phosphorylase kinase as the catalyst, and identified it using a nonradioactive phosphate-affinity gel electrophoresis method. Compared with the half-half GPa/GPb mixture, the as-prepared GPab showed a unique AMP-binding affinity. To further investigate the intersubunit communication in GP, its catalytic site was probed using pyridylaminated-maltohexaose (a maltooligosaccharide-based substrate comprising the essential dextrin structure for GP; abbreviated as PA-0) and a series of specifically modified PA-0 derivatives (substrate analogs lacking part of the essential dextrin structure). By comparing the initial reaction rates toward the PA-0 derivative (Vderivative) and PA-0 (VPA-0), we demonstrated that the Vderivative/VPA-0 ratio for GPab was significantly different from that for the half-half GPa/GPb mixture. This result indicates that the interaction between the two GP subunits significantly influences substrate recognition at the catalytic sites, thereby providing GPab its unique substrate recognition profile.


Asunto(s)
Dextrinas , Glucógeno Fosforilasa , Animales , Conejos , Dominio Catalítico , Glucógeno Fosforilasa/metabolismo , Músculos/metabolismo , Comunicación
3.
Tissue Cell ; 86: 102265, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37948956

RESUMEN

Acetamiprid (ACMP) is a second-generation neonicotinoid that has been extensively used in the last few years. The present study examined the toxic effects of ACMP on the pancreas and glucose homeostasis through the evaluation of histological and biochemical changes and the possible ameliorative role of fenugreek seed extract (FG). Fifty adult albino rats were divided into 5 groups: negative control, positive control, FG-treated, ACMP-treated, and ACMP + FG-treated groups by oral gavage for 12 weeks. The ACMP-treated group highlighted significant elevations in plasma glucose, glycosylated haemoglobin levels (HbA1c), serum amylase, and serum lipase, along with a decrease in plasma insulin levels. In addition, significant increases in tumour necrosis factor- alpha (TNF-α) and malondialdehyde (MDA) were associated with reductions in the levels of interleukin 10 (IL-10), glutathione peroxidase, and catalase. Moreover, glucose-6-phosphatase and glycogen phosphorylase were significantly increased, with a significant reduction in hexokinase and liver glycogen stores. These biochemical changes were associated with histological changes in pancreatic sections stained by haematoxylin and eosin, Masson stain, and Orcein stain. ACMP-treated cells showed a marked reduction in ß- cell immune reactivity to insulin, with pronounced p53, and beclin 1 immune expression. The use of FG with ACMP induced partial protection except for hexokinase and glycogen phosphorylase.


Asunto(s)
Aminopiridinas , Antioxidantes , Hexoquinasa , Trigonella , Ratas , Animales , Antioxidantes/metabolismo , Hexoquinasa/metabolismo , Ratas Wistar , Estrés Oxidativo , Páncreas/metabolismo , Extractos Vegetales/farmacología , Neonicotinoides/toxicidad , Neonicotinoides/metabolismo , Insulina/metabolismo , Apoptosis , Homeostasis , Autofagia , Glucógeno Fosforilasa/metabolismo , Glucógeno Fosforilasa/farmacología , Glucosa/metabolismo
4.
Exp Anim ; 73(1): 101-108, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37704434

RESUMEN

This study compared differences in exercise capacity as well as muscle glycogen content and degradation, and mitochondrial enzyme activity between C57BL/6J and BALB/cA mice. In exercise tests, grip strength was higher in BALB/cA mice. In Rotarod and Inverted screen test, C57BL/6J mice had significantly longer exercise durations and showed differences in motor function and muscle endurance time. Glycogen in the liver and muscle of C57BL/6J mice was significantly decreased after 20 min of swimming. Muscle glycogen content in BALB/cA mice was higher than in C57BL/6J, but swimming induced no decrease in glycogen content. Glycogen phosphorylase in muscle was inactive in the absence of AMP, and its activity increased in a concentration-dependent manner with the addition of AMP in C57BL/6J mice. In BALB/cA mice, phosphorylase activity was increased by AMP, but not further increased by higher concentrations of AMP. The citrate synthase activity in muscle did not differ between C57BL/6J and BALB/cA mice. The results of this study suggested that the reactivity of muscle glycogen phosphorylase to AMP differs among strains of mice and affects glycogen availability during exercise.


Asunto(s)
Glucógeno , Músculo Esquelético , Ratones , Animales , Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Tolerancia al Ejercicio , Ratones Endogámicos C57BL , Glucógeno Fosforilasa/metabolismo
5.
J Am Chem Soc ; 146(1): 298-307, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158228

RESUMEN

It remains a major challenge to ascertain the specific structurally dynamic changes that underpin protein functional switching. There is a growing need in molecular biology and drug discovery to complement structural models with the ability to determine the dynamic structural changes that occur as these proteins are regulated and function. The archetypal allosteric enzyme glycogen phosphorylase is a clinical target of great interest to treat type II diabetes and metastatic cancers. Here, we developed a time-resolved nonequilibrium millisecond hydrogen/deuterium-exchange mass spectrometry (HDX-MS) approach capable of precisely locating dynamic structural changes during allosteric activation and inhibition of glycogen phosphorylase. We resolved obligate transient changes in the localized structure that are absent when directly comparing active/inactive states of the enzyme and show that they are common to allosteric activation by AMP and inhibition by caffeine, operating at different sites. This indicates that opposing allosteric regulation by inhibitor and activator ligands is mediated by pathways that intersect with a common structurally dynamic motif. This mass spectrometry approach uniquely stands to discover local transient structural dynamics and could be used broadly to identify features that influence the structural transitions of proteins.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Deuterio , Medición de Intercambio de Deuterio/métodos , Proteínas/química , Espectrometría de Masas/métodos , Glucógeno Fosforilasa/metabolismo , Conformación Proteica
6.
Aging Cell ; 22(9): e13928, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522798

RESUMEN

Inhibition of glycogen breakdown blocks memory formation in young animals, but it stimulates the maintenance of the long-term potentiation, a cellular mechanism of memory formation, in hippocampal slices of old animals. Here, we report that a 2-week treatment with glycogen phosphorylase inhibitor BAY U6751 alleviated memory deficits and stimulated neuroplasticity in old mice. Using the 2-Novel Object Recognition and Novel Object Location tests, we discovered that the prolonged intraperitoneal administration of BAY U6751 improved memory formation in old mice. This was accompanied by changes in morphology of dendritic spines in hippocampal neurons, and by "rejuvenation" of hippocampal proteome. In contrast, in young animals, inhibition of glycogen degradation impaired memory formation; however, as in old mice, it did not alter significantly the morphology and density of cortical dendritic spines. Our findings provide evidence that prolonged inhibition of glycogen phosphorolysis improves memory formation of old animals. This could lead to the development of new strategies for treatment of age-related memory deficits.


Asunto(s)
Glucógeno Fosforilasa , Hipocampo , Ratones , Animales , Hipocampo/metabolismo , Glucógeno Fosforilasa/metabolismo , Trastornos de la Memoria/metabolismo , Cognición , Glucógeno/metabolismo , Espinas Dendríticas/metabolismo
7.
Chem Biol Interact ; 382: 110568, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37277066

RESUMEN

Glycogen phosphorylase (GP) is the rate-determining enzyme in the glycogenolysis pathway. Glioblastoma (GBM) is amongst the most aggressive cancers of the central nervous system. The role of GP and glycogen metabolism in the context of cancer cell metabolic reprogramming is recognised, so that GP inhibitors may have potential treatment benefits. Here, baicalein (5,6,7-trihydroxyflavone) is studied as a GP inhibitor, and for its effects on glycogenolysis and GBM at the cellular level. The compound is revealed as a potent GP inhibitor against human brain GPa (Ki = 32.54 µM), human liver GPa (Ki = 8.77 µM) and rabbit muscle GPb (Ki = 5.66 µM) isoforms. It is also an effective inhibitor of glycogenolysis (IC50 = 119.6 µM), measured in HepG2 cells. Most significantly, baicalein demonstrated anti-cancer potential through concentration- and time-dependent decrease in cell viability for three GBM cell-lines (U-251 MG, U-87 MG, T98-G) with IC50 values of ∼20-55 µM (48- and 72-h). Its effectiveness against T98-G suggests potential against GBM with resistance to temozolomide (the first-line therapy) due to a positive O6-methylguanine-DNA methyltransferase (MGMT) status. The solved X-ray structure of rabbit muscle GP-baicalein complex will facilitate structure-based design of GP inhibitors. Further exploration of baicalein and other GP inhibitors with different isoform specificities against GBM is suggested.


Asunto(s)
Glioblastoma , Animales , Humanos , Conejos , Cinética , Glioblastoma/tratamiento farmacológico , Cristalografía por Rayos X , Glucógeno Fosforilasa/metabolismo
8.
Mol Cell Neurosci ; 126: 103863, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37268282

RESUMEN

Glucose accesses the brain primarily via the astrocyte cell compartment, where it passes through the glycogen shunt before catabolism to the oxidizable fuel L-lactate. Glycogen phosphorylase (GP) isoenzymes GPbb and GPmm impose distinctive control of ventromedial hypothalamic nucleus (VMN) glucose-regulatory neurotransmission during hypoglycemia, but lactate and/or gliotransmitter involvement in those actions is unknown. Lactate or the octadecaneuropeptide receptor antagonist cyclo(1-8)[DLeu5] OP (LV-1075) did not affect gene product down-regulation caused by GPbb or GPmm siRNA, but suppressed non-targeted GP variant expression in a VMN region-specific manner. Hypoglycemic up-regulation of neuronal nitric oxide synthase was enhanced in rostral and caudal VMN by GPbb knockdown, yet attenuated by GPMM siRNA in the middle VMN; lactate or LV-1075 reversed these silencing effects. Hypoglycemic inhibition of glutamate decarboxylase65/67 was magnified by GPbb (middle and caudal VMN) or GPmm (middle VMN) knockdown, responses that were negated by lactate or LV-1075. GPbb or GPmm siRNA enlarged hypoglycemic VMN glycogen profiles in rostral and middle VMN. Lactate and LV-1075 elicited progressive rostral VMN glycogen augmentation in GPbb knockdown rats, but stepwise-diminution of rostral and middle VMN glycogen after GPmm silencing. GPbb, not GPmm, knockdown caused lactate or LV-1075 - reversible amplification of hypoglycemic hyperglucagonemia and hypercorticosteronemia. Results show that lactate and octadecaneuropeptide exert opposing control of GPbb protein in distinct VMN regions, while the latter stimulates GPmm. During hypoglycemia, GPbb and GPmm may respectively diminish (rostral, caudal VMN) or enhance (middle VMN) nitrergic transmission and each oppose GABAergic signaling (middle VMN) by lactate- and octadecaneuropeptide-dependent mechanisms.


Asunto(s)
Hipoglucemia , Núcleo Hipotalámico Ventromedial , Ratas , Animales , Núcleo Hipotalámico Ventromedial/metabolismo , Isoenzimas/metabolismo , Ratas Sprague-Dawley , Hipoglucemia/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Neurotransmisores/farmacología , Glucógeno Fosforilasa/metabolismo , Glucógeno Fosforilasa/farmacología , Lactatos/metabolismo , Lactatos/farmacología , Hormonas/metabolismo , Hormonas/farmacología
9.
Diabetes ; 72(8): 1154-1160, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216640

RESUMEN

Lactate is an important metabolic substrate for sustaining brain energy requirements when glucose supplies are limited. Recurring exposure to hypoglycemia (RH) raises lactate levels in the ventromedial hypothalamus (VMH), which contributes to counterregulatory failure. However, the source of this lactate remains unclear. The current study investigates whether astrocytic glycogen serves as the major source of lactate in the VMH of RH rats. By decreasing the expression of a key lactate transporter in VMH astrocytes of RH rats, we reduced extracellular lactate concentrations, suggesting excess lactate was locally produced from astrocytes. To determine whether astrocytic glycogen serves as the major source of lactate, we chronically delivered either artificial extracellular fluid or 1,4-dideoxy-1,4-imino-d-arabinitol to inhibit glycogen turnover in the VMH of RH animals. Inhibiting glycogen turnover in RH animals prevented the rise in VMH lactate and the development of counterregulatory failure. Lastly, we noted that RH led to an increase in glycogen shunt activity in response to hypoglycemia and elevated glycogen phosphorylase activity in the hours following a bout of hypoglycemia. Our data suggest that dysregulation of astrocytic glycogen metabolism following RH may be responsible, at least in part, for the rise in VMH lactate levels. ARTICLE HIGHLIGHTS: Astrocytic glycogen serves as the major source of elevated lactate levels in the ventromedial hypothalamus (VMH) of animals exposed to recurring episodes of hypoglycemia. Antecedent hypoglycemia alters VMH glycogen turnover. Antecedent exposure to hypoglycemia enhances glycogen shunt activity in the VMH during subsequent bouts of hypoglycemia. In the immediate hours following a bout of hypoglycemia, sustained elevations in glycogen phosphorylase activity in the VMH of recurrently hypoglycemic animals contribute to sustained elevations in local lactate levels.


Asunto(s)
Hipoglucemia , Ácido Láctico , Ratas , Animales , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Glucógeno/metabolismo , Astrocitos/metabolismo , Ratas Sprague-Dawley , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Glucógeno Fosforilasa/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo
10.
J Biol Chem ; 299(5): 104669, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37011860

RESUMEN

Considerable evidence confirms the importance of Cyp26a1 to all-trans-retinoic acid (RA) homeostasis during embryogenesis. In contrast, despite its presence in postnatal liver as a potential major RA catabolizing enzyme and its acute sensitivity to induction by RA, some data suggested that Cyp26a1 contributes only marginally to endogenous RA homeostasis postnatally. We report reevaluation of a conditional Cyp26a1 knockdown in the postnatal mouse. The current results show that Cyp26a1 mRNA in WT mouse liver increases 16-fold upon refeeding after a fast, accompanied by an increased rate of RA elimination and a 41% decrease in the RA concentration. In contrast, Cyp26a1 mRNA in the refed homozygotic knockdown reached only 2% of its extent in WT during refeeding, accompanied by a slower rate of RA catabolism and no decrease in liver RA, relative to fasting. Refed homozygous knockdown mice also had decreased Akt1 and 2 phosphorylation and pyruvate dehydrogenase kinase 4 (Pdk4) mRNA and increased glucokinase (Gck) mRNA, glycogen phosphorylase (Pygl) phosphorylation, and serum glucose, relative to WT. Fasted homozygous knockdown mice had increased glucagon/insulin relative to WT. These data indicate that Cyp26a1 participates prominently in moderating the postnatal liver concentration of endogenous RA and contributes essentially to glucoregulatory control.


Asunto(s)
Glucemia , Homeostasis , Ácido Retinoico 4-Hidroxilasa , Tretinoina , Animales , Ratones , Hígado/enzimología , Hígado/metabolismo , Ácido Retinoico 4-Hidroxilasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , ARN Mensajero/genética , Tretinoina/metabolismo , Glucoquinasa/metabolismo , Glucógeno Fosforilasa/metabolismo , Insulina/metabolismo , Animales Recién Nacidos , Fosforilación , Glucemia/metabolismo
11.
Molecules ; 28(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37049768

RESUMEN

Glycogen phosphorylase (GP) is a key regulator of glucose levels and, with that, an important target for the discovery of novel treatments against type 2 diabetes. ß-d-Glucopyranosyl derivatives have provided some of the most potent GP inhibitors discovered to date. In this regard, C-ß-d-glucopyranosyl azole type inhibitors proved to be particularly effective, with 2- and 4-ß-d-glucopyranosyl imidazoles among the most potent designed to date. His377 backbone C=O hydrogen bonding and ion-ion interactions of the protonated imidazole with Asp283 from the 280s loop, stabilizing the inactive state, were proposed as crucial to the observed potencies. Towards further exploring these features, 4-amino-3-(ß-d-glucopyranosyl)-5-phenyl-1H-pyrazole (3) and 3-(ß-d-glucopyranosyl)-4-guanidino-5-phenyl-1H-pyrazole (4) were designed and synthesized with the potential to exploit similar interactions. Binding assay experiments against rabbit muscle GPb revealed 3 as a moderate inhibitor (IC50 = 565 µM), but 4 displayed no inhibition at 625 µM concentration. Towards understanding the observed inhibitions, docking and post-docking molecular mechanics-generalized Born surface area (MM-GBSA) binding free energy calculations were performed, together with Monte Carlo and density functional theory (DFT) calculations on the free unbound ligands. The computations revealed that while 3 was predicted to hydrogen bond with His377 C=O in its favoured tautomeric state, the interactions with Asp283 were not direct and there were no ion-ion interactions; for 4, the most stable tautomer did not have the His377 backbone C=O interaction and while ion-ion interactions and direct hydrogen bonding with Asp283 were predicted, the conformational strain and entropy loss of the ligand in the bound state was significant. The importance of consideration of tautomeric states and ligand strain for glucose analogues in the confined space of the catalytic site with the 280s loop in the closed position was highlighted.


Asunto(s)
Glucógeno Fosforilasa , Pirazoles , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacología , Glucógeno Fosforilasa/antagonistas & inhibidores , Glucógeno Fosforilasa/metabolismo , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Método de Montecarlo , Conformación Molecular , Glucosa/análogos & derivados , Glucosa/química , Glucosa/metabolismo , Glucosa/farmacología , Diabetes Mellitus Tipo 2
12.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838691

RESUMEN

Brain-type glycogen phosphorylase (PYGB) inhibitors are recognized as prospective drugs for treating ischemic brain injury. We previously reported compound 1 as a novel glycogen phosphorylase inhibitor with brain-protective properties. In this study, we validated whether PYGB could be used as the therapeutic target for hypoxic-ischemic diseases and investigated whether compound 1 exerts a protective effect against astrocyte hypoxia/reoxygenation (H/R) injury by targeting PYGB. A gene-silencing strategy was initially applied to downregulate PYGB proteins in mouse astrocytes, which was followed by a series of cellular experiments with compound 1. Next, we compared relevant indicators that could prove the protective effect of compound 1 on brain injury, finding that after PYGB knockdown, compound 1 could not obviously alleviate astrocytes H/R injury, as evidenced by cell viability, which was not significantly improved, and lactate dehydrogenase (LDH) leakage rate, intracellular glucose content, and post-ischemic reactive oxygen species (ROS) level, which were not remarkably reduced. At the same time, cellular energy metabolism did not improve, and the degree of extracellular acidification was not downregulated after administration of compound 1 after PYGB knockdown. In addition, it could neither significantly increase the level of mitochondrial aerobic energy metabolism nor inhibit the expression of apoptosis-associated proteins. The above results indicate that compound 1 could target PYGB to exert its protective effect against cellular H/R injury in mouse astrocytes. Simultaneously, we further demonstrated that PYGB could be an efficient therapeutic target for ischemic-hypoxic diseases. This study provides a new reference for further in-depth study of the action mechanism of the efficacy of compound 1.


Asunto(s)
Lesiones Encefálicas , Glucosa , Ratones , Animales , Glucosa/metabolismo , Glucógeno Fosforilasa/metabolismo , Hipoxia/metabolismo , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Indoles/farmacología , Astrocitos
13.
IUBMB Life ; 75(4): 328-336, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36239169

RESUMEN

Glycogen is a polymerized form of glucose that serves as an energy reserve in all types of organisms. In animals glycogen synthesis and degradation, especially in liver and skeletal muscle, are regulated by hormonal and physiological signals that reciprocally control the opposing activities of glycogen synthase and glycogen phosphorylase. These enzymes are under allosteric control by binding of metabolites (e.g., ATP, AMP, G6P) and covalent control by reversible phosphorylation by kinase and phosphatase all assembled together on glycogen. More than 50 years ago Edmond Fischer and colleagues showed "flash activation" of phosphorylase in glycogen particles. This involved transient and extensive inhibition of protein phosphatase but even today the phenomenon is not understood. Phosphatase regulation is known to rely on regulatory subunits including glycogen binding subunits that serve as scaffolds, binding catalytic subunit, glycogen, and substrates. This tribute article to Edmond Fischer highlights his thoughts and ideas about the transient inhibition of phosphorylase phosphatase during flash activation of phosphorylase and speculates that phosphatase regulation in glycogen particles might involve a/b hybrids of phosphorylase.


Asunto(s)
Fosfoproteínas Fosfatasas , Fosforilasa Fosfatasa , Animales , Fosfoproteínas Fosfatasas/metabolismo , Glucógeno , Glucógeno Fosforilasa/genética , Glucógeno Fosforilasa/metabolismo , Fosforilasas/genética , Fosforilasas/metabolismo , Músculo Esquelético/metabolismo , Hígado/metabolismo
14.
Molecules ; 27(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36234871

RESUMEN

Brain-type glycogen phosphorylase inhibitors are potential new drugs for treating ischemic brain injury. In our previous study, we reported compound 1 as a novel brain-type glycogen phosphorylase inhibitor with cardioprotective properties. We also found that compound 1 has high blood-brain barrier permeability through the ADMET prediction website. In this study, we deeply analyzed the protective effect of compound 1 on hypoxic-ischemic brain injury, finding that compound 1 could alleviate the hypoxia/reoxygenation (H/R) injury of astrocytes by improving cell viability and reducing LDH leakage rate, intracellular glucose content, and post-ischemic ROS level. At the same time, compound 1 could reduce the level of ATP in brain cells after ischemia, improve cellular energy metabolism, downregulate the degree of extracellular acidification, and improve metabolic acidosis. It could also increase the level of mitochondrial aerobic energy metabolism during brain cell reperfusion, reduce anaerobic glycolysis, and inhibit apoptosis and the expression of apoptosis-related proteins. The above results indicated that compound 1 is involved in the regulation of glucose metabolism, can control cell apoptosis, and has protective and potential therapeutic effects on cerebral ischemia-reperfusion injury, which provides a new reference and possibility for the development of novel drugs for the treatment of ischemic brain injury.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Hipoxia-Isquemia Encefálica , Daño por Reperfusión , Adenosina Trifosfato/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral , Glucosa/metabolismo , Glucógeno Fosforilasa/metabolismo , Humanos , Indoles/farmacología , Isquemia , Especies Reactivas de Oxígeno , Daño por Reperfusión/tratamiento farmacológico
15.
Biochem Pharmacol ; 203: 115201, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926650

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. There is an urgent need for new targets to treat HCC due to limited treatment options and drug resistance. Many cancer cells are known to have high amount of glycogen than their tissue of origin and inhibition of glycogen catabolism induces cancer cell death by apoptosis. To further understand the role of glycogen in HCC and target it for pharmacotherapy, we studied metabolic adaptations and mitochondrial function in HepG2 cells after pharmacological inhibition of glycogen phosphorylase (GP) by CP-91149 (CP). GP inhibition increased the glycogen levels in HepG2 cells without affecting overall glucose uptake. Glycolytic capacity and importantly glycolytic reserve decreased significantly. Electron microscopy revealed that CP treatment altered mitochondrial morphology leading to mitochondrial swelling with less defined cristae. A concomitant decrease in mitochondrial oxygen consumption and mitochondria-linked ATP generation was observed. Metabolomics and enzyme activity / expression studies showed a decrease in the pentose phosphate pathway. In addition, CP treatment decreased the growth of HepG2 3D tumor spheroids in a dose- and time-dependent manner. Taken together, our study provides insights into metabolic alterations and mitochondrial dysfunction accompanying apoptosis in HepG2 cells upon GP inhibition. Our study can aid in the understanding of the mechanism and development of metabolic inhibitors to treat HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptosis , Carcinoma Hepatocelular/metabolismo , Glucógeno/metabolismo , Glucógeno Fosforilasa/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Mitocondrias/metabolismo
16.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897773

RESUMEN

In the last few years, several efforts have been made to identify original strategies against glioblastoma multiforme (GBM): this requires a more detailed investigation of the molecular mechanism of GBM so that novel targets can be identified for new possible therapeutic agents. Here, using a combined biochemical and proteomic approach, we evaluated the ability of a blood-brain barrier-permeable 2,3-benzodiazepin-4-one, called 1g, to interfere with the activity and the expression of brain glycogen phosphorylase (PYGB) on U87MG cell line in parallel with the capability of this compound to inhibit the cell growth and cycle. Thus, our results highlighted PYGB as a potential therapeutic target in GBM prompting 1g as a capable anticancer drug thanks to its ability to negatively modulate the uptake and metabolism of glucose, the so-called "Warburg effect", whose increase is considered a common feature of cancer cells in respect of their normal counterparts.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glucógeno Fosforilasa/metabolismo , Humanos , Proteómica
17.
Mol Cell Endocrinol ; 553: 111698, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718260

RESUMEN

Astrocyte glycogen constitutes the primary energy fuel reserve in the brain. Current research investigated the novel premise that glycogen turnover governs astrocyte responsiveness to critical metabolic and neurotransmitter (norepinephrine) regulatory signals in a sex-dimorphic manner. Here, rat hypothalamic astrocyte glycogen phosphorylase (GP) gene expression was silenced by short-interfering RNA (siRNA) to investigate how glycogen metabolism controlled by GP-brain type (GPbb) or GP-muscle type (GPmm) activity affects glucose [glucose transporter-2 (GLUT2)] and energy [5'-AMP-activated protein kinase (AMPK)] sensor and adrenergic receptor (AR) proteins in each sex. Results show that in the presence of glucose, glycogen turnover is regulated by GPbb in the male or by GPmm in the female, yet in the absence of glucose, glycogen breakdown is controlled by GPbb in each sex. GLUT2 expression is governed by GPmm-mediated glycogen breakdown in glucose-supplied astrocytes of each sex, but glycogenolysis controls glucoprivic GLUT2 up-regulation in male only. GPbb-mediated glycogen disassembly causes divergent changes in total AMPK versus phosphoAMPK profiles in male. During glucoprivation, glycogenolysis up-regulates AMPK content in male astrocytes by GPbb- and GPmm-dependent mechanisms, whereas GPbb-mediated glycogen breakdown inhibits phosphoAMPK expression in female. GPbb and GPmm activity governs alpha2-AR and beta1-AR protein levels in male, but has no effect on these profiles in the female. Outcomes provide novel evidence for sex-specific glycogen regulation of glucose- and energy-sensory protein expression in hypothalamic astrocytes, and identify GP isoforms that mediate such control in each sex. Results also show that glycogen regulation of hypothalamic astrocyte receptivity to norepinephrine is male-specific. Further studies are needed to characterize the molecular mechanisms that underlie sex differences in glycogen control of astrocyte protein expression.


Asunto(s)
Glucosa , Hipoglucemia , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Astrocitos/metabolismo , Femenino , Glucosa/metabolismo , Glucógeno/metabolismo , Glucógeno Fosforilasa/metabolismo , Hipoglucemia/metabolismo , Masculino , Norepinefrina/metabolismo , Norepinefrina/farmacología , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Cell Death Dis ; 13(6): 573, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764612

RESUMEN

Channelling of glucose via glycogen, known as the glycogen shunt, may play an important role in the metabolism of brain tumours, especially in hypoxic conditions. We aimed to dissect the role of glycogen degradation in glioblastoma (GBM) response to ionising radiation (IR). Knockdown of the glycogen phosphorylase liver isoform (PYGL), but not the brain isoform (PYGB), decreased clonogenic growth and survival of GBM cell lines and sensitised them to IR doses of 10-12 Gy. Two to five days after IR exposure of PYGL knockdown GBM cells, mitotic catastrophy and a giant multinucleated cell morphology with senescence-like phenotype developed. The basal levels of the lysosomal enzyme alpha-acid glucosidase (GAA), essential for autolysosomal glycogen degradation, and the lipidated forms of gamma-aminobutyric acid receptor-associated protein-like (GABARAPL1 and GABARAPL2) increased in shPYGL U87MG cells, suggesting a compensatory mechanism of glycogen degradation. In response to IR, dysregulation of autophagy was shown by accumulation of the p62 and the lipidated form of GABARAPL1 and GABARAPL2 in shPYGL U87MG cells. IR increased the mitochondrial mass and the colocalisation of mitochondria with lysosomes in shPYGL cells, thereby indicating reduced mitophagy. These changes coincided with increased phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase 2, slower ATP generation in response to glucose loading and progressive loss of oxidative phosphorylation. The resulting metabolic deficiencies affected the availability of ATP required for mitosis, resulting in the mitotic catastrophy observed in shPYGL cells following IR. PYGL mRNA and protein levels were higher in human GBM than in normal human brain tissues and high PYGL mRNA expression in GBM correlated with poor patient survival. In conclusion, we show a major new role for glycogen metabolism in GBM cancer. Inhibition of glycogen degradation sensitises GBM cells to high-dose IR indicating that PYGL is a potential novel target for the treatment of GBMs.


Asunto(s)
Glioblastoma , Adenosina Trifosfato , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Glucosa/farmacología , Glucógeno/metabolismo , Glucógeno Fosforilasa/genética , Glucógeno Fosforilasa/metabolismo , Humanos , Hígado/metabolismo , Isoformas de Proteínas , ARN Mensajero
19.
Exp Neurol ; 349: 113966, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973964

RESUMEN

Astrocytic glycogen serves as an important glucose reserve, and its degradation provides extra support for neighboring neurons during energy deficiency. Salvianolic acid B (SAB) exerts a neuroprotective effect on reperfusion insult after cerebrovascular occlusion, but the effect of SAB on astrocytic glycogen and its relationship with neuroprotection are not completely understood. Here, we knocked down astrocyte-specific glycogen phosphorylase (GP, the rate-limiting enzyme in glycogenolysis) in vitro and in vivo and investigated the changes in key enzymes in glycogen metabolism by performing immunoblotting in vitro and immunofluorescence in vivo. Neurobehavioral and morphological assessments were conducted to uncover the outcomes during brain reperfusion. SAB accelerated astrocytic glycogenolysis by upregulating GP activity but not GP expression after reperfusion. Suppression of astrocytic glycogenolysis weakened SAB-mediated neuroprotection against the reperfusion insult. In addition, activation of glycogenolysis by SAB contributed to the survival of astrocytes and surrounding neurons by increasing antioxidant levels in astrocytes. Our data reveal that astrocytic GP represents an important metabolic target in SAB-induced protection against brain damage after cerebrovascular recanalization.


Asunto(s)
Astrocitos/metabolismo , Benzofuranos/farmacología , Glucógeno/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Antioxidantes/metabolismo , Conducta Animal , Supervivencia Celular , Femenino , Glucógeno Fosforilasa/metabolismo , Glucogenólisis , Accidente Cerebrovascular Isquémico/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Daño por Reperfusión/psicología
20.
Cell Mol Life Sci ; 79(2): 84, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35059851

RESUMEN

The release of extracellular vesicles (EVs) is increased under cellular stress and cardiomyocyte damaging conditions. However, whether the cardiomyocyte-derived EVs eventually reach the systemic circulation and whether their number in the bloodstream reflects cardiac injury, remains unknown. Wild type C57B/6 and conditional transgenic mice expressing green fluorescent protein (GFP) by cardiomyocytes were studied in lipopolysaccharide (LPS)-induced systemic inflammatory response syndrome (SIRS). EVs were separated both from platelet-free plasma and from the conditioned medium of isolated cardiomyocytes of the left ventricular wall. Size distribution and concentration of the released particles were determined by Nanoparticle Tracking Analysis. The presence of GFP + cardiomyocyte-derived circulating EVs was monitored by flow cytometry and cardiac function was assessed by echocardiography. In LPS-treated mice, systemic inflammation and the consequent cardiomyopathy were verified by elevated plasma levels of TNFα, GDF-15, and cardiac troponin I, and by a decrease in the ejection fraction. Furthermore, we demonstrated elevated levels of circulating small- and medium-sized EVs in the LPS-injected mice. Importantly, we detected GFP+ cardiomyocyte-derived EVs in the circulation of control mice, and the number of these circulating GFP+ vesicles increased significantly upon intraperitoneal LPS administration (P = 0.029). The cardiomyocyte-derived GFP+ EVs were also positive for intravesicular troponin I (cTnI) and muscle-associated glycogen phosphorylase (PYGM). This is the first direct demonstration that cardiomyocyte-derived EVs are present in the circulation and that the increased number of cardiac-derived EVs in the blood reflects cardiac injury in LPS-induced systemic inflammation (SIRS).


Asunto(s)
Movimiento Celular , Vesículas Extracelulares/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Síndrome de Respuesta Inflamatoria Sistémica/patología , Animales , Movimiento Celular/efectos de los fármacos , Clusterina/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Glucógeno Fosforilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/fisiopatología , Tamoxifeno/farmacología , Troponina I/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA